COMMONALITY OF PHENOMENA IN COMPOSITE MATERIALS The effect of molybdenum on the microstructure and creep behavior of Ti–24Al–17Nb–xMo alloys and Ti–24Al–17Nb–xMo SiC-fiber composites

نویسندگان

  • J. P. Quast
  • C. J. Boehlert
چکیده

The effect of molybdenum (Mo) on the microstructure and creep behavior of nominally Ti–24Al– 17Nb (at.%) alloys and their continuously reinforced SiCfiber composites (fiber volume fraction = 0.35) was investigated. Constant-load, tensile-creep experiments were performed in the stress range of 10–275 MPa at 650 C in air. A Ti–24Al–17Nb–2.3Mo (at.%) alloy exhibited significantly greater creep resistance than a Ti–24Al–17Nb–0.66Mo (at.%) alloy, and correspondingly a 90 -oriented Ultra SCS-6/Ti–24Al–17Nb–2.3Mo metal matrix composite (MMC) exhibited significantly greater creep resistance than an Ultra SCS-6/Ti–24Al–17Nb– 0.66Mo MMC. Thus, the addition of 2.3 at.% Mo significantly improved the creep resistance of both the alloy and the MMC. An Ultra SCS-6 Ti–25Al–17Nb–1.1Mo (at.%) MMC exhibited creep resistance similar to that of the Ultra SCS-6/Ti–25Al–17Nb–2.3Mo (at.%). Using a modified Crossman model, the MMC secondary creep rates were predicted from the monolithic matrix alloys’ secondary creep rates. For identical creep temperatures and applied stresses, the 90 -oriented MMCs exhibited greater creep rates than their monolithic matrix alloy counterparts. This was explained to be a result of the low interfacial bond strength between the matrix and the fiber, measured using a cruciform test methodology, and was in agreement with the modified Crossman model. Scanning electron microscopy observations indicated that debonding occurred within the carbon layers of the fiber-matrix interface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of the Microstructure, Tensile, and Creep Behavior for Ti-24Al-17Nb-0.66Mo (Atomic Percent) and Ti-24Al-17Nb-2.3Mo (Atomic Percent) Alloys

The effect of small molybdenum additions, 0.66 and 2.3 at. pct, on the microstructure, tensile, and creep behavior of a nominally Ti-24Al-17Nb (at. pct) alloy was investigated. The alloy containing 2.3 at. pct Mo contained higher body-centered-cubic (bcc) phase volume fractions, which was expected as Mo stabilizes the bcc phase. Constant load, tensile-creep experiments were performed in the str...

متن کامل

Structure and Mechanical Properties of As-Cast Ti–5Sn–xMo Alloys

Ti-5Sn-xMo (x = 0, 1, 3, 5, 7.5, 10, 12.5, 15, 17.5, and 20 wt %) alloys were designed and prepared for application as implant materials with superior mechanical properties. The results demonstrated that the crystal structure and mechanical properties of Ti-5Sn-xMo alloys are highly affected by their Mo content. The as-cast microstructures of Ti-5Sn-xMo alloys transformed in the sequence of pha...

متن کامل

Effect of Substrate Bias Voltage and Ti Doping on the Tribological Properties of DC Magnetron Sputtered MoSx Coatings‌

Molybdenum disulfide (MoS2) is one of the most widely used solid lubricants. In this work, composite MoSx/Ti coatings were deposited by direct-current magnetron sputter ion plating onto plain carbon steel substrates. The MoSx/Ti ratio in the coatings was controlled by sputtering the composite targets. The composition, microstructure, and mechanical properties of the coatings were explored using...

متن کامل

بررسی تأثیر فرآیند اکستروژن بر ریزساختار و استحکام کامپوزیت Al6061-SiC

Al-SiC composites are among the most demanding metal matrix composites due to their excellent strength, good ductility, good corrosion resistance, low coefficient of thermal expansion and reasonable price. Manufacturing of cast metal matrix composites usually involves some problems such as inhomogeneous distribution of the particles due to poor wetability of ceramics to molten alloys, porosity ...

متن کامل

Influence of shock loading on the structure/property response of Ti-48Al-2Cr-2Nb and Ti-24Al-11Nb

Intermetallics are receiving increasing attention for applications requiring high-leverage materials possessing potentially high pay-offs such as in gas-turbine engines. While the quasistatic deformation response of a broad range of intermetallics is receiving intense scientific and engineering study increased utilization of intermetallics under dynamic loading requires an understanding of thei...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008